
GPU-Accelerated Differential Evolution for Robotic Planning and
Control

Yandong Luo

July 31, 2025

1 Proposed Method

Robotic planning and control problems are often formulated as optimization tasks with both discrete
and continuous variables. Common problem types include Mixed-Integer Programming (MIP) for
task scheduling and mode switching, Mixed-Integer Quadratic Programming (MIQP) for footstep
and contact planning, and Nonlinear Programming (NLP) for trajectory optimization and motion
control. To handle non-convexity and ensure real-time performance, many of these problems are
approximated or linearized using sequential convex programming or other relaxation techniques.
These diverse optimization formulations expose several fundamental challenges in robotic planning
and control:

• High Computational Cost: Many optimization-based methods require solving nonlinear,
non-convex problems in real-time, which is computationally intensive, especially for high-DOF
robots or whole-body control.

• Non-differentiability: Contact-rich tasks, discrete decisions, and hybrid dynamics often
lead to non-differentiable cost functions, making gradient-based methods less effective or even
infeasible.

• Local Minima: Traditional trajectory optimization is prone to local minima, particularly in
cluttered or dynamic environments.

• Limited Real-time Performance: Real-time constraints in robotic control demand fast
computation, but current methods often struggle to meet strict latency requirements without
sacrificing solution quality.

To address these challenges, We propose a general GPU-accelerated framework integrating differ-
ential evolution and Bézier parameterization for efficient and smooth control optimization. Unlike
conventional gradient-based optimizers or task-specific solvers, the proposed framework handles
complex, high-dimensional, and non-differentiable optimization problems in a unified manner. By
leveraging GPU parallelism, it enables large-scale population updates and fitness evaluations simul-
taneously, significantly reducing computational time and making real-time applications feasible.
The contributions of this work can be summarized as follows:

• Unified, Gradient-Free Optimization Framework: We propose a GPU-accelerated SHADE
and Bézier curve based optimization framework that handles MIP, MIQP, non-convex, and
non-differentiable motion planning problems without gradients.

1

• Task- and Model-Agnostic Generality: The same optimization pipeline applies to diverse
robotic tasks by simply changing the dynamics model or cost function, without modifying
solver internals.

• Broad Experimental Validation: The generality of the proposed framework is demon-
strated through experiments on three representative robotic domains: nonlinear cart-pole
swing-up control, humanoid locomotion using a Linear Inverted Pendulum Model (LIPM)
with discrete footstep planning, and autonomous vehicle trajectory planning under full dy-
namic constraints.

2 Differential Evolution

Differential Evolution (DE), proposed by Storn and Price in 1995, is a type of evolutionary algo-
rithm mainly used to find the global optimum of functions defined in continuous parameter spaces,
where the functions can be nonlinear, non-convex, non-differentiable, and multi-modal. This algo-
rithm determines the search direction and step size based on the differences among individuals in
the population. It is simple to implement, requires few control parameters, and has strong robust-
ness. According to Table 1, evolutionary algorithms, especially the Success-History based Adaptive
Differential Evolution (SHADE) family, have consistently ranked in the top three in the Congress
on Evolutionary Computation over the past two decades. However, DE does not utilize gradient
information and relies on iterative population updates, where each individual is modified and evalu-
ated one by one, leading to low computational efficiency on CPUs, especially for large-scale problems.

Year 1st 2nd 3rd
2005 N/A N/A N/A
2006 εDEag DMS-PSO PCP
2007 N/A N/A N/A
2008 MTS LSEDA-gl jDEdynNP-F
2009 jDE - -
2010 εDEag ECHT jDEsoco
2011 GA-MPC DE-Λcr SAMODE
2012 N/A N/A N/A
2013 NBIPOPaCMA icmaesils DRMA-LSCh-CMA
2014 L-SHADE N/A N/A
2015 SPS-L-SHADE-EIG DEsPA MVMO, LSHADE-ND
2016 N/A N/A N/A
2017 EBOwithCMAR jSO LSHADE-cnEpSin
2018 IUDE MA-ES LSHADE-IEpsilon
2019 jDE100 DISHchain1e+12 HyDE-DF, SOMA-T3A
2020 IMODE AGSK j2020
2021 APGSK_IMODE MadeDE NL-SHADE-RSP
2022 EAeigN100-10 NL-SHADE-LBC NL-SHADE-RSP-MID
2023 ML_EA LSHADE AV_LSHADE_2

Table 1: Single-objective continuous optimization problem results from the Congress on Evolution-
ary Computation (CEC), 2005–2023.

To address these limitations, we propose a GPU-based SHADE framework that reduces the time

2

complexity from O(Gmax × PS × D) on CPUs to O(Gmax) under ideal parallelism, as illustrated
in Algorithm 1. Beyond this asymptotic improvement, the massive parallelism of GPUs accelerates
evolutionary algorithms in multiple aspects, including population-level parallel updates, batch fit-
ness evaluations, and concurrent evolutionary operations such as mutation, crossover, and selection.

• Modern GPU enable evolutionary algorithms to efficiently process large-scale populations and
evaluate multiple solution candidates in parallel. This capability comes from the hardware de-
sign of GPU, which support massive concurrency for example, the NVIDIA A100 features 108
Streaming Multiprocessors (SMs), each capable of running up to 2048 threads simultaneously.

• Parallel fitness evaluations and vector operations further reduce the computational overhead,
making DE scalable to high-dimensional and computationally expensive problems.

3

Algorithm 1: Comparison of CPU-SHADE and CUDA-SHADE.
CPU time complexity: O(Gmax × PS ×D);
CUDA time complexity: O(Gmax)

Notation: PS: population size; D: problem dimension; Gmax: maximum generation;
MF , MCR: memory of historical F and CR; SF , SCR: successful F and CR archive;
xi,g: individual i at generation g; xpbest,g: top-ranked individual; A: external archive;
vi,g+1: mutant vector; ui,g+1: trial vector; CF (x): objective function.
Input: PS, D, CF (x), Gmax, archive A = ∅
Output: xbest,g
Initialize MF , MCR, SF , SCR
if CPU-SHADE then

Generate population P with PS members (sequential)
if CUDA-SHADE then

Generate population P with PS members in parallel
Compute xbest,g (CPU: sequential; GPU: parallel reduction)
for each generation g do

if CPU-SHADE then
for each member xi,g do

Select MFk, CRk from MF , MCR
Fi ∼ N (MFk, 0.1), CRi ∼ N (CRk, 0.1)
Select xpbest,g, xr1,g, xr2,g

vi,g+1 = xi,g + Fi(xr1,g − xr2,g) + Fi(xpbest,g − xi,g)

uj,i,g+1 =

{
vj,i,g+1, if randj ≤ CR or j = rnb(i)

xj,i,g, otherwise

Evaluate CF (ui,g+1) sequentially
Perform selection

if CUDA-SHADE then
In parallel for all xi,g:

Select MFk, CRk from MF , MCR
Fi ∼ N (MFk, 0.1), CRi ∼ N (CRk, 0.1)
Select xpbest,g, xr1,g, xr2,g

vi,g+1 = xi,g + Fi(xr1,g − xr2,g) + Fi(xpbest,g − xi,g)

uj,i,g+1 =

{
vj,i,g+1, if randj ≤ CR or j = rnb(i)

xj,i,g, otherwise

Evaluate CF (ui,g+1) in parallel
Perform selection

Update SF , SCR, MF , MCR, A, PS (GPU: parallel reduction or atomic ops)
return xbest,g

4

3 Related Work

GPU-accelerated optimization has become an important research direction for robotic planning and
control due to its potential to solve large-scale problems under real-time constraints.
A representative example of GPU-based SQP optimization is MPCGPU: Real-Time Nonlinear
Model Predictive Control through Preconditioned Conjugate Gradient on the GPU [1], which for-
mulates nonlinear MPC as a sequence of quadratic programs and solves them in real time using a
GPU-accelerated Preconditioned Conjugate Gradient (PCG) method. The method constructs the
Karush-Kuhn-Tucker (KKT) system at each iteration, applies a Schur complement to reduce sys-
tem size, and solves the resulting condensed system of the form Sλ∗ = γ using PCG. The approach
achieves real-time performance by leveraging the structure of sparse linear systems and GPU-parallel
matrix-vector operations.

Sλ∗ = γ

This system is efficiently solved on GPUs by leveraging parallel matrix-vector products and sparse
linear algebra operations, enabling real-time execution. Although MPCGPU targets nonlinear opti-
mization problems, it relies on sequential local approximations through linearization and quadratic
expansion, following a standard SQP framework. As a result, its performance is sensitive to initial-
izations and may degrade in problems with severe non-convexity or complex solution landscapes,
where local approximations become inaccurate. In such cases, convergence to suboptimal solutions
or poor local minima is likely.

3.1 MPCGPU

3.1.1 Sequential Quadratic Programming Formulation

Original Problem (Nonlinear Formulation) Given the discrete-time dynamics:

xk+1 = f(xk, uk, h), x0 = xs

Cost function:

J(X,U) = ℓf (xN) +

N−1∑
k=0

ℓ(xk, uk)

Local Quadratic Approximation (Sequential Quadratic Programming Idea) The Se-
quential Quadratic Programming (SQP) method works by linearizing the nonlinear constraints,
such as system dynamics, through first-order Taylor expansion, and quadraticizing the nonlin-
ear cost function via second-order Taylor expansion. Both expansions are performed around a
nominal trajectory (xnom

k , unom
k), which serves as the current reference solution in the iterative

process.
Dynamics Linearization:

δxk+1 ≈ Akδxk +Bkδuk

where

Ak =
∂f

∂x

∣∣∣∣
(xnom

k ,unom
k)

, Bk =
∂f

∂u

∣∣∣∣
(xnom

k ,unom
k)

5

δxk = xk − xnomk , δuk = uk − unomk

Cost Quadraticization:
Expand the cost to second-order:
For stage cost:

ℓ(xk, uk) ≈ ℓ(xnom
k , unom

k) +∇xℓ
T δxk +∇uℓ

T δuk +
1

2
δxTkQkδxk +

1

2
δuTkRkδuk

For terminal cost:

ℓf (xN) ≈ ℓf (x
nom
N) +∇xℓ

T
f δxN +

1

2
δxTNQNδxN

Quadratic Program Formulation Put it all together:
Objective Function:
Minimize w.r.t. δX, δU :

min
δX,δU

1

2
δxTNQNδxN + qTNδxN

+

N−1∑
k=0

(
1

2
δxTkQkδxk + qTk δxk +

1

2
δuTkRkδuk + rTk δuk

)
Constraints:
Initial condition:

δx0 = xs − xnom
0

Linearized dynamics:

δxk+1 = f(xnom
k , unom

k) +Akδxk +Bkδuk − xk+1

This ensures deviation consistency.

3.1.2 KKT System Formulation

To solve the Quadratic Program, the Karush-Kuhn-Tucker (KKT) conditions are applied. The
KKT system couples the cost function and constraints into a single linear system.
The system is written as: [

G CT

C 0

] [
−δZ
λ

]
=

[
g
c

]
where:

• δZ is the stacked vector of decision variable deviations:

6

δZ =



δx0
δu0
δx1
δu1
· · ·

δxN−1

δuN−1

δxN


• G is the block diagonal Hessian matrix of the cost:

G = blockdiag(Q0, R0, . . . , QN−1, RN−1, QN)

• g is the stacked gradient vector of the cost:

g =



q0
r0
q1
r1
· · ·

qN−1

rN−1

qN


• C encodes the linearized system constraints:

C =


I 0 0 · · · 0
−A0 −B0 I · · · 0
0 0 −A1 −B1 · · ·
...

...
...

...
. . .

0 · · · 0 −AN−1 −BN−1 I


• c is the defect vector, representing the dynamics residuals:

c =


x0 − xs

xnom
1 − f(xnom

0 , unom
0)

xnom
2 − f(xnom

1 , unom
1)

...
xnom
N − f(xnom

N−1, u
nom
N−1)


Solution:
Solving the KKT system yields the optimal increments δZ∗, which are then used to update the
trajectory:

xnew
k = xnom

k + δx∗k, unew
k = unom

k + δu∗k

This iterative process continues until convergence is achieved.

7

3.1.3 The Schur Complement Method

To efficiently solve the KKT system from the previous section, the Schur Complement Method
is applied. This reduces the computational complexity by eliminating the decision variables δZ and
solving a smaller system for the dual variables λ.

Step 1: Form the Schur Complement System Given the KKT system:[
G CT

C 0

] [
−δZ
λ

]
=

[
g
c

]
The Schur complement S and right-hand side γ are defined as:

S = −CG−1CT , γ = c− CG−1g

Then, solve for λ∗:

Sλ∗ = γ

Step 2: Recover δZ∗ Once λ∗ is obtained, the optimal trajectory increments δZ∗ can be com-
puted via:

δZ∗ = −G−1
(
g − CTλ∗)

Matrix Definitions To explicitly construct S, define the following intermediate terms:

θk = AkQ
−1
k AT

k +BkR
−1
k BT

k +Q−1
k+1

ϕk = −AkQ
−1
k

ζk = −AkQ
−1
k qk −BkR

−1
k rk +Q−1

k+1qk+1

Schur Complement Matrix Structure Using the above definitions, the Schur complement
matrix S becomes a block-banded symmetric matrix:

S = −


Q−1

0 ϕT
0

ϕ0 θ0 ϕT
1

ϕ1 θ1
. . .

.
θN−1


Right-Hand Side The corresponding right-hand side γ is:

γ = c−


Q−1

0 q0
ζ0
ζ1
...

ζN−1


8

Advantages This method reduces the size of the system to be solved and exploits the problem’s
structure, allowing for efficient parallelization and faster solution, particularly suitable for GPU
implementations.

3.1.4 Iterative Methods

To solve the Schur complement system:

Sλ∗ = γ

iterative methods are employed due to the large-scale and sparse structure of S. The most commonly
used method is the Preconditioned Conjugate Gradient (PCG) algorithm, which is especially
suitable for GPU implementations due to its reliance on matrix-vector products rather than direct
matrix inversion.

Conjugate Gradient Method The conjugate gradient (CG) method iteratively refines the solu-
tion λ by minimizing the quadratic form associated with S. The convergence rate of CG is directly
related to the condition number of S. A wide spread of eigenvalues leads to slower convergence.

Preconditioning To accelerate convergence, a preconditioner Φ ≈ S is introduced. This trans-
forms the original system into a better-conditioned equivalent system:

Φ−1Sλ∗ = Φ−1γ

The preconditioner reduces the spread of the eigenvalues, improving numerical properties and re-
ducing iteration counts.

Preconditioned Conjugate Gradient Algorithm The following summarizes the PCG algo-
rithm used to solve Sλ∗ = γ:
Algorithm 2: Preconditioned Conjugate Gradient (PCG)
Input: S, Φ−1, γ, initial λ, tolerance ϵ
Output: Solution λ∗

r ← γ − Sλ
r̃ ← Φ−1r
p← r̃
η ← rT r̃
for i = 1 to max_iter do

α← η/(pTSp)
r ← r − αSp
λ← λ+ αp
r̃ ← Φ−1r
η′ ← rT r̃
if η′ < ϵ then

return λ
β ← η′/η
p← r̃ + βp
η ← η′

return λ

9

Advantages

• Memory Efficient: Only requires matrix-vector products.

• GPU Friendly: Exploits parallel reductions and sparse operations.

• Scalable: Suitable for large-scale systems in MPC and optimal control.

4 Differential Evolution

The main process of differential evolution can be described as shown in Figure 1

Figure 1: The main process of Differential Evolution

4.1 Start & Initialization

In the Start module, the optimization problem variables are encoded into a single vector, each
representing a potential feasible solution, as illustrated in Figure 2. Each vector is also called an

10

individual. In addition, the constraints of the problem are formulated and represented in matrix form
to facilitate subsequent computations. In the initialization module, each individual will randomly
initialize the vector within the bounds of the constraints. Each individual represents a guess for the
solution.

Figure 2: Decode variable as the vector

4.2 Evaluation

In the evaluation module, the constrained problem is reformulated into an unconstrained problem
using the augmented Lagrangian method. The Lagrange multipliers act as penalty weights for
constraint violations. Using matrix multiplication, the fitness of each individual is computed, incor-
porating both the constraints and the objective function. This fitness value reflects the feasibility
and precision of the solution.
In addition, this module has the capability to incorporate dynamic perception information, enabling
the robot to evaluate its surrounding environment, such as performing parallel assessments of mul-
tiple obstacles. It can also integrate IMU data to facilitate the evaluation of the robot’s posture.
For control-related tasks, the module can further support the evaluation of future multi-step motion
control. Notably, all these computations are designed to be executed efficiently through GPU-based
multi-threading, resulting in a highly efficient and scalable evaluation process.

4.3 Evolution

When the fitness of the current best individual fails to meet the convergence criteria, the iterative
update process of the Differential Evolution (DE) algorithm is initiated. The entire iterative up-
date process is executed in parallel on the multi-threaded GPU. Each element of each individual

11

is assigned to a corresponding thread, where the evolution steps of the differential evolution algo-
rithm are independently performed. This design enables the framework to achieve a high degree of
parallelism at both the multi-task level and the task-solving level as shown in Figure 3

Figure 3: Parallelization in process-level and task-level.

4.4 Crossover

The first step in this process is the crossover operation, which plays a critical role in determining
which elements of an individual are selected for mutation to generate a new candidate solution. The
specific mechanism of the crossover operation is described as follows:

uj,i =

{
vj,i if rand[0, 1) ≤ CRi,

xj,i otherwise.

where, j represents the j-th dimension of an individual, i denotes the i-th individual in the entire
population, CR is the random number, and xj,i corresponds to the j-th element of the i-th original
individual. Similarly, vj,i represents the corresponding element of the new individual.

In SHADE, the CR value is not fixed but dynamically adjusted. It is drawn from a memory archive
that stores successful parameters from previous iterations. By utilizing parameters that performed
well in past iterations, the algorithm adaptively selects more effective crossover probabilities, en-
hancing its performance over time.

4.5 Mutation

In the mutation module of the SHADE algorithm, a mutant vector is generated for each individual
based on both historical success and current population dynamics. The mutation formula in SHADE
is defined as:

12

vj,i = xj,i + Fi · (xp,best − xj,i) + Fi · (xr1 − xr2),

where vj,i is the j-th element of the mutant vector for individual i, and xj,i represents the j-
th element of the current individual i. The term xp,best is a randomly selected individual from
the top p-percent of the population ranked by fitness, while xr1 and xr2 are two randomly se-
lected individuals from the population, ensuring r1 ̸= r2 ̸= i. The scaling factor Fi is defined as
Fi = rand(MF , ri, 0.1), where MF is sampled from a historical memory archive that records suc-
cessful scaling factors from previous iterations.

Figure 4: Mutation process [2]

This mutation process integrates several key mechanisms to enhance the optimization process. First,
the selection of xp,best from the top-performing individuals directs the search toward promising re-
gions in the solution space, promoting exploitation. Second, the adaptive sampling of Fi from the
memory archive allows the algorithm to learn from historical successes and dynamically adjust the
mutation behavior, ensuring robust performance across iterations. Lastly, the difference vectors
(xp,best − xj,i) and (xr1 − xr2) balance exploitation and exploration by introducing both focused
improvement and diversity into the search process as shown in Figure 4. These mechanisms together
make the mutation operation in SHADE highly adaptive and effective for solving high-dimensional
optimization problems.

4.6 Evaluation & Reorganize

After the mutation step, the newly generated individuals are evaluated to assess their fitness and
determine the quality of the new population. This evaluation is performed to ensure that only

13

promising solutions are considered for the subsequent selection process.

In the Reorganization module, the evaluated individuals are compared to the current population to
select the better-performing solutions. The update process for each individual is defined as:

xi,G+1 =

{
ui,G, if f(ui,G) ≤ f(xi,G),

xi,G, otherwise.

Here, xi,G represents the i-th individual in generation G, ui,G is the new individual generated
through mutation, and f is the fitness function. If the fitness of ui,G is better (or equal), it replaces
xi,G in the next generation; otherwise, the original individual is retained.

To enhance the algorithm’s adaptability, the memory archives for the crossover rate (CR) and
scaling factor (F) are updated based on the success of evolved individuals. The update rules are as
follows:

MCR,k,G+1 =


∑SCR

k=1 wkS
2
CR,k∑SCR

k=1 wkSCR,k

, if successful,

MCR,k,G, otherwise.

MF,k,G+1 =


∑SF

k=1 wkS
2
F,k∑SF

k=1 wkSF,k

, if successful,

MF,k,G, otherwise.

Here, SCR and SF denote the sets of successful CR and F values, respectively, while the weights
wk are computed as:

wk =
∆fk∑|SCR|

k=1 ∆fk
,

where ∆fk = |f(µk,G) − f(xk, G)| quantifies the improvement in fitness for successful individuals.
This weighting ensures that more significant improvements have a greater impact on the memory
updates.

By dynamically updating these memory archives, the algorithm adapts its parameters based on
historical success, improving its convergence and robustness over successive generations.

4.7 Warm Start

The GPU-accelerated Differential Evolution (DE) algorithm exhibits high efficiency in solving opti-
mization problems, demonstrating significant potential for fast solutions in large-scale scenarios. By
leveraging GPU-based parallelism, the algorithm is capable of handling complex, high-dimensional
optimization tasks with reduced computational overhead, making it well-suited for applications re-
quiring real-time performance.

To further enhance the framework’s efficiency and accuracy in continuous and dynamic robotic
tasks, a warm start module can be incorporated. In such environments, where optimization prob-
lems evolve over time, the solution to the previous task often provides valuable guidance for solving
the current problem. The warm start module initializes the population by utilizing the previous
solution as a reference point. Around this reference, new individuals are generated by introducing

14

random perturbations within a defined neighborhood. This approach enables the population to re-
tain diversity while benefiting from prior knowledge, facilitating faster convergence to high-quality
solutions.

By adapting previous solutions to the current context, the warm start module significantly reduces
the computational cost associated with reinitialization and accelerates optimization in dynamic
environments. This strategy enhances the framework’s ability to efficiently and effectively solve
sequential tasks, making it highly suitable for real-time robotic systems operating in continuous
and dynamic settings.

5 Experiment

To demonstrate the scalability and generality of our proposed algorithm, we evaluate it on three rep-
resentative tasks with increasing complexity: from low-dimensional control with contact constraints
to high-dimensional hybrid planning under nonlinear dynamics. These tasks cover cart-pole balanc-
ing, humanoid locomotion, and autonomous vehicle planning.

• CartPole: We consider a nonlinear cart-pole system under strong stochastic noise and dy-
namic wall contacts. The environment features continuously moving walls, and the controller
uses the full nonlinear dynamics for planning. Our method successfully balances the pole and
enforces contact constraints, achieving over 10× speedup compared to Gurobi-based solvers.

• Humanoid-LIMP: This experiment focuses on whole-body humanoid control using cen-
troidal momentum dynamics. We perform LIPM-based motion planning with nonlinear con-
straints and discrete footstep switching, formulated as a mixed-integer optimization problem
with obstacle avoidance. Our solver achieves stable and feasible locomotion while running up
to 20× faster than Gurobi.

• Autonomous Vehicle: We scale our approach to a high-dimensional autonomous driv-
ing task using a full nonlinear vehicle model with drag, friction, tire slip, and actuator
limits. The planner handles geometric constraints from road boundaries, traffic rules, and
dynamic/static agents. It enables parallel multi-behavior planning including lane-keeping,
lane-change, and overtaking. This scenario highlights the extensibility of our algorithm to
real-world autonomous systems.

5.1 Cart-Pole System

As shown in Figure 5, the coordination of this system is located at the center. The right side
is positive, left side is negative. The pole swings leftwards for positive angles and rightwards for
negative angles.

5.1.1 Linear MPC Model

The optimization uses a stage cost and terminal cost:

xg[k] represents the control target for x[k].

The matrices Ek and EN are positive definite. Xk is the domain of x[k]. The system is formulated
in a compact form as shown in Figure 7.

15

Figure 5: Cart-Pole System with moving soft contact walls

Figure 6: Model Predictive Control (MPC) Formulation for cart pole

Let the state variables be defined as:

x1 = position (pos), x2 = θ, x3 = v, x4 = θ̇

with a runtime step ∆t = 0.02.
Here, λ is the wall force:

λ1 from left wall, λ2 from right wall

Linear Model Constraints

• Cart position: −0.6 ≤ x1 ≤ 0.6

• Pole angle: −π
2 ≤ x2 ≤ π

2

• Cart velocity:

−2× 0.6

∆t
≤ x3 ≤

2× 0.6

∆t

• Angular velocity:
− π

∆t
≤ x4 ≤

π

∆t

• Control input: −20 ≤ u ≤ 20

16

Figure 7: Linearized Cart-Pole Model

• Contact forces:
0 ≤ λ1, λ2 ≤ 20

• Cart and pole position constraints:

x1 − lx2 ≤ wallright, x1 − lx2 ≥ wallleft

where Dmax = 1.2 is the maximum distance from the origin.

5.1.2 Nonlinear Dynamics

The nonlinear dynamics of the cart-pole system are given by:

a =
−θ̇2lmp sin(θ) +

gmp sin(2θ)
2 + λ1 cos

2(θ)− λ1 − λ2 cos
2(θ) + λ2 + F

mc +mp sin
2(θ)

θ̈ =
−θ̇2lm2

p sin(2θ)/2 + gmcmp sin(θ) + gm2
p sin(θ) + λ1mc cos(θ)− λ2mc cos(θ) +mpF cos(θ)

lmp(mc +mp sin
2(θ))

State Transfer

vt+1 = vt + a∆t

xt+1 = xt + vt∆t+
1

2
a∆t2

θ̇t+1 = θ̇t + θ̈∆t

θt+1 = θt + θ̇t∆t+
1

2
θ̈∆t2

where:

• vt: velocity at time t

• xt: position at time t

• θt: angle at time t

• θ̇t: angular velocity at time t

17

• θ̈: angular acceleration

• ∆t: time step

• a: linear acceleration

Contact with Wall

xpole1 = −(l sin(θ)− x)

xpole2 = l sin(θ)− x

where xpole1 is for pole tilting to the right and xpole2 to the left.

Wall Contact Forces

λ1 =

{
k1(xpole1 − xwall,R), if xpole1 ≥ xwall,R

0, otherwise

λ2 =

{
k2(xpole2 − xwall,L), if xpole2 ≤ xwall,L

0, otherwise

References

[1] Emre Adabag, Miloni Atal, William Gerard, and Brian Plancher. Mpcgpu: Real-time nonlinear
model predictive control through preconditioned conjugate gradient on the gpu. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 9787–9794. IEEE, 2024.

[2] Sakshi Aggarwal and Krishn K. Mishra. X-mode: Extended multi-operator differential evolution
algorithm. Mathematics and Computers in Simulation, 211:85–108, 2023.

18

	Proposed Method
	Differential Evolution
	Related Work
	MPCGPU
	Sequential Quadratic Programming Formulation
	KKT System Formulation
	The Schur Complement Method
	Iterative Methods

	Differential Evolution
	Start & Initialization
	Evaluation
	Evolution
	Crossover
	Mutation
	Evaluation & Reorganize
	Warm Start

	Experiment
	Cart-Pole System
	Linear MPC Model
	Nonlinear Dynamics

